第50卷第1期/2023年1月/中国激光



# 等离激元纳米海胆结构增强热载流子的产生与注入

王茜<sup>1</sup>.梁红艳<sup>1,2\*</sup>

<sup>1</sup>天津大学材料科学与工程学院,天津 300350; <sup>2</sup>天津大学中低温热能高效利用教育部重点实验室,天津 300350

**摘要** 等离激元激发产生的热载流子可以有效驱动化学反应的发生,进而实现太阳能的高效利用。合理设计等离 激元金属纳米结构是提高热载流子产生与注入效率,进而实现超宽光谱吸收和高效能量转换的有效途径。本课题 组制备了具有高密度尖端的等离激元纳米海胆颗粒,并构建了金属半导体复合结构的光阳极,通过测试光阳极微反 应区的光电流响应评估了热载流子的产生与注入效率。结果表明:纳米海胆结构具有优异的光电催化活性,其尖端 处的大量热点促进了热载流子的产生,金属与半导体间丰富的界面接触增加了热载流子的注入机会。该设计为热载流子的高效激发与提取提供了参考。

关键词 材料;纳米海胆结构;热载流子;表面等离激元;等离激元光催化 中图分类号 O643.3 **文献标志码** A

#### DOI: 10.3788/CJL221040

# 1 引 言

太阳能因具有分布范围广、储量丰富、绿色环保可 再生等优势而被认为是一种非常具有潜力的新能源。 通过简单的光化学反应将太阳能转化为化学能的研究 受到了越来越多人的关注[1-6]。光激发下等离激元金 属(如Au、Ag、Cu、Al等)纳米结构的局域表面等离激 元共振(LSPR)特性使其具有优异的光俘获性能,能 极大地增强光与物质的相互作用,在提高有机发光二 极管出光效率和太阳能转换方面具有巨大潜力[7-11]。 在等离激元金属纳米结构中,表面等离激元共振 (SPR)能量的一部分以辐射衰减的形式释放为光子, 体现为等离激元光散射,另一部分则以非辐射衰减形 式经朗道阻尼在飞秒时间尺度内形成热载流子。然 而,热载流子会在非常短的时间内经碰撞散射弛 豫<sup>[12-13]</sup>。尽管热载流子可以有效推动太阳能到化学能 的转化,但热载流子的快速弛豫和相对较短的平均自 由程严重制约了等离激元光催化的应用<sup>[14]</sup>。

等离激元金属纳米结构与合适的半导体结合形成 肖特基接触被认为是收集热载流子的有效方法<sup>[15]</sup>。通 过构建金属-半导体复合结构,可以在热载流子弛豫前 将具有足够能量的激发态电子有效注入到紧邻的半导 体中,防止热载流子在受光激发后发生弛豫,有利于产 生电流或驱动化学反应<sup>[16-19]</sup>。为获得更高的能量效 率,增加"化学上有用的"高能载流子的浓度,需要进一 步提高等离激元诱导的热载流子的产生效率和注入效

率<sup>[20-21]</sup>。提高热载流子产率可以通过调控等离激元金 属纳米颗粒的元素组分、形状和尺寸进而调节LSPR 强度和共振波长来实现<sup>[2]</sup>。例如,小尺寸纳米颗粒的 表面散射过程会打破线性动量守恒,使更多的电子被 激发到高能量状态,有利于大量的热载流子生成[22]。 同时,具有尖锐形态的金属纳米结构被认为更有利于 热载流子的生成,这与其可以产生具有更高局部电场 强度的热点有关<sup>[23]</sup>。小尺寸的等离激元金属纳米颗粒 在获得高的热载流子注入效率方面更有优势,这是因 为只有当纳米颗粒的尺寸小于电子-电子散射的平均 自由程时,受激电子才能到达受体中。Ratchford等<sup>[24]</sup> 预测具有尖锐曲率的纳米结构具有更高的热电子注入 效率。此外,热载流子注入效率还依赖于等离激元金 属纳米颗粒与半导体的界面耦合。金属与半导体的界 面耦合越强,热电子的注入效率就越高[25]。金属半导 体接触形成的肖特基势垒可以抑制电子空穴对的复 合,同时也是影响热电子注入效率的重要因素[26]。对 半导体材料进行改性可以降低肖特基势垒的高度,使 更多的热电子可以穿过势垒,进一步提高热电子注入 效率[27]。

本课题组选择 TiO<sub>2</sub>作为半导体<sup>[28]</sup>,通过在 TiO<sub>2</sub>薄 膜上滴铸等离激元纳米海胆颗粒(NUs)制备光阳极, 然后利用自制的光电化学池进行了光电流测试。测试 结果显示,NUs-TiO<sub>2</sub>具有良好的光电催化性能<sup>[29]</sup>。这 归因于 NUs尖峰间的大量热点提高了热电子的产生 效率,金属与半导体之间丰富的界面增加了热载流子

收稿日期: 2022-07-12; 修回日期: 2022-09-23; 录用日期: 2022-09-28; 网络首发日期: 2022-10-15

**基金项目**:国家自然科学基金(51771132)

通信作者: \*hongyan. liang@tju. edu. cn

注入的机会,形成的肖特基势垒有助于抑制热电子回流。同时,溶胶凝胶法制备的TiO2薄膜中引入的氧空位缺陷<sup>[30]</sup>以及NUs尖端的离子富集作用<sup>[31]</sup>都可以进一步降低反应势垒,促进反应的进行。

# 2 实 验

# 2.1 实验材料

硝酸银(AgNO<sub>3</sub>, 纯度为99%)、柠檬酸钠溶液 (Na<sub>3</sub>C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>·2H<sub>2</sub>O,质量分数为99.7%)、左旋多巴 (3,4-dihydroxyphenylalanine,质量分数为98%)、氨水 (NH<sub>3</sub>·H<sub>2</sub>O,质量分数为30%)、抗坏血酸(L-AA,质量 分数为99.7%)、氯化金水合物(HAuCl<sub>4</sub>·4H<sub>2</sub>O,质量 分数为99.9%)、硫酸钠(Na<sub>2</sub>SO<sub>4</sub>,纯度为99.7%)、十 六烷基三甲基溴化铵(CTAB,质量分数为98%)和硼 氢化钠(NaBH<sub>4</sub>,纯度为99%)均购自上海阿拉丁生化 科技股份有限公司。钛酸四异丙酯(C<sub>12</sub>H<sub>28</sub>O<sub>4</sub>Ti,纯度 为97%)购自上海麦克林生化科技有限公司。硝酸和 乙醇均为分析纯级别的试剂,且均购自大茂化学试剂 有限公司。所有实验均采用电阻率为18.2 MΩ/cm的 去离子水进行。所有玻璃器皿在新配制的王水(用盐 酸和硝酸按体积比为3:1配制而成)中浸泡30 min,然 后用去离子水冲洗,直到没有残留。

#### 2.2 NUs的制备

采用种子介导生长的方式制备 NUs<sup>[32]</sup>,具体步骤 如下:1)采取柠檬酸钠还原法进行种子溶液的制备。 将9mg硝酸银加入到含有50mL去离子水的圆底烧 瓶中,加热至回流,随后加入1.2 mL质量分数为1% 的柠檬酸钠溶液,将混合溶液继续煮沸2min,冷却至 室温,得到50mL黄绿色银种子溶液。2)制备生长溶 液。将2.4 mL浓度为10 mmol/L的HAuCl<sub>4</sub>水溶液与 4.3 mL去离子水混合于20 mL管制螺口玻璃瓶中,将 转速调至300 r/min,将玻璃瓶放入15℃的水浴锅中, 10 min后将 0.1 mL制备好的银种子溶液和 2.4 mL 左 旋多巴水溶液(10 mmol/L)加入到上述溶液中,转速 仍保持在 300 r/min,反应 1 min 后将转速降至 100 r/ min,溶液颜色由透明黄色变为墨绿色,最后变为深灰 色。3)将产物进行离心洗涤,离心转速为6000 r/ min,离心完成后收集产物并依次用500 mol/L甲酸水 溶液、稀释后的氨水溶液和去离子水离心洗涤,最终获 得 NUs。

#### 2.3 TiO<sub>2</sub>薄膜的制备

纳米 TiO<sub>2</sub>薄膜采用溶胶-凝胶法制备<sup>[33]</sup>。首先在 剧烈搅拌下将 6.1 mL 钛酸四异丙酯溶解在 40.6 mL 乙醇中,得到前驱体溶液;随后,将 17 mL 乙醇、0.27 mL 去离子水和 0.196 mL 质量分数为 68% 的 HNO<sub>3</sub>混合 均匀,并将混合物作为酸性催化剂逐滴加入到前驱体 溶液中进行水解;接着在室温下连续搅拌 20 h,前驱体 水解后得到稳定透明的 TiO<sub>2</sub>溶胶。

将掺杂氟的 SnO₂透明导电玻璃(FTO)分别用丙

酮、乙醇、去离子水超声清洗,然后用氮气吹扫干燥,备用;随后利用旋涂法镀膜,将300 μL的TiO₂溶胶以3500 r/min的转速在FTO基片上旋涂30 s;最后,将湿膜放入管式炉中,在500℃下以1℃/min的加热和冷却速率退火2h,得到纳米TiO₂薄膜。

#### 2.4 光电流测量

微尺度水平上的光电流测量在自制的三电极光电 化学池中进行。电解液采用浓度为 0.5 mol/L 的硫酸 钠溶液,对电极采用铂丝,参比电极采用校准后的 Ag/AgCl 电极,工作电极采用有无 NUs 滴铸的 TiO<sub>2</sub>/FTO。514 nm激发光通过水浸物镜(放大倍数 为 63,数值孔径为 0.9)聚焦于样品上,激发功率为 10 mW,激光光斑直径为 0.69  $\mu$ m,激发光功率密度 为 26.76 mW/ $\mu$ m<sup>2</sup>。光电流通过电化学工作站 (CHI760E)进行采集。

# 2.5 表 征

采用 Hitachi s4800 扫描电子显微镜(SEM)和 JEM-2100F透射电子显微镜(TEM)对样品进行形貌 表征;采用 Perkin-Elmer Lambda 750紫外可见近红外 分光光度计(UV-vis-NIR)测量样品的消光光谱和稳 态光谱;采用 Bruker D8 Advanced X 射线衍射仪 (XRD)对样品的晶体结构进行表征;采用 Edinburgh Instruments 公司的 FS5光致发光荧光光谱仪(PL)测 量样品的稳态荧光光谱。

#### 2.6 模 拟

利用Lumerical软件进行时域有限差分(FDTD), 模拟NUs的电场分布。NUs的建模模型是核心尺寸 为100 nm、枝尖尺寸20 nm的海胆形状。

# 3 分析与讨论

#### 3.1 NUs的表征

采用种子介导生长法通过置换反应获得的 NUs<sup>[32]</sup>的表征结果如图1所示。图1(a)、图1(b)分别 是 NUs 的 高 倍 和 低 倍 TEM 图 像,图 1(c)是 NUs 的 SEM图像。上述表征结果表明表面形貌均匀且具有 多枝尖结构的 NUs 被成功制备。利用计算软件 Image J量化NUs的尺寸分布,结果如图1(e)和图1(f) 所示。可以看到直方图中的曲线符合高斯分布,颗粒 核心尺寸为100 nm±13 nm,枝尖尺寸为18 nm±5 nm, 总体尺寸约为140 nm。图1(a)右上角插图和图1(d) 表明所制备的纳米溶胶在波长为500~1000 nm 范围 内显示出吸收率约为80%的宽吸收特性。出现宽吸 收峰的可能原因如下:海胆颗粒尖刺长度、宽度的变化 以及相邻尖刺间随机排列的间隙导致了多个具有不同 光谱位置和强度的LSPR共振重叠,形成了准宽带连续 消光光谱[7]。一般来说,光谱损失是限制太阳能电池效 率与太阳能转换效率的主要因素[34]。本次实验制备的 纳米海胆结构在可见光到近红外范围表现出了良好的 光吸收能力,这将大大增加太阳光的可利用范围。



图 1 NUs的表征结果。(a)高倍放大的 TEM 图,插图为 NUs 胶体溶液的光学照片;(b)低倍 TEM 图;(c)SEM 图;(d)归一化消光光 谱;(e) NUs尖刺的尺寸分布;(f) NUs核心的尺寸分布

Fig. 1 Characterization of NUs. (a) High-magnification TEM image, where the inset is optical photo of NUs colloidal solution;
(b) low-magnification TEM image; (c) SEM image; (d) normalized extinction spectrum; (e) size distribution of NUs spikes;
(f) size distribution of NUs cores

## 3.2 NUs-TiO<sub>2</sub>热电子转移机制

表面等离激元衰变产生的热载流子会在100 fs~ 10 ps范围内经碰撞散射发生弛豫<sup>[35]</sup>,热载流子驱动的 光催化反应受到热载流子寿命低的限制而表现出相当 低的量子效率。一种解决方法是将受电子或供电子物 质(分子或半导体)与等离激元金属纳米颗粒直接接 触,以促进有效的电荷分离<sup>[36]</sup>。本文选取宽带隙半导 体TiO<sub>2</sub>作为电子受体,这是因为其具有较高的导带态 密度,可以允许快速的电子注入,是一种良好的接受电 子的金属氧化物。并且,TiO<sub>2</sub>的吸收光谱不与金纳米 颗粒的吸收光谱重叠,从而排除了TiO<sub>2</sub>电荷分离的影 响,有利于进行仅由热载流子驱动的化学反应能量效 率的实验研究。

图 2(a)为NUs-TiO<sub>2</sub>界面的能带结构示意图。根据 Govorov等<sup>[14]</sup>建立的等离激元金属纳米颗粒在表面 光化学应用中光生热载流子的理论,NUs 会与n型半 导体 TiO<sub>2</sub>在界面处形成肖特基接触,肖特基势垒 ( $\Delta E_{\text{barrier}}$ )位于 NUs 的费米能级与 TiO<sub>2</sub>导带的界面处,势垒值约为1 eV。这一势垒值对应的光波长约为 1240 nm,这意味着当入射光波长 $\lambda < 1240$  nm时,就能 够产生具有足够能量的激发态电子来克服这一能量势 垒,从而进一步注入到 TiO<sub>2</sub>导带中<sup>[37]</sup>。因此,本文选择 514 nm 激光作为激发光源进行热载流子驱动反应 过程的研究是合适的。

接下来进一步对 NUs-TiO<sub>2</sub>界面的能带结构进行 说明。热载流子通过等离激元衰变在 NUs 中产生, TiO<sub>2</sub>的导带和价带在 NUs-TiO<sub>2</sub>界面附近向上弯曲, 具有足够能量和动量的热载流子可以克服肖特基势垒 注入到 TiO<sub>2</sub>中,实现热电子的收集<sup>[38-39]</sup>。肖特基结的 作用在于分离激发的电子和空穴,减少金属内的热电 子弛豫及复合。NUs由于具有多枝尖多间隙结构而 被认为是有效产生和传输热载流子、激活表面化学反 应的优异选择。

## 3.3 NUs-TiO<sub>2</sub>样品分析

NUs-TiO<sub>2</sub>样品的制备如前面实验部分所述,本课 题组选择能够承受更高退火温度的FTO作为衬底。 在FTO上生长一层纳米TiO<sub>2</sub>薄膜,然后将新鲜制备 的金颗粒滴铸在其表面。NUs-TiO<sub>2</sub>样品的SEM图如 图 2(b)所示,可以看到,NUs与TiO<sub>2</sub>样品的SEM图如 图 2(c)为NUs-TiO<sub>2</sub>/FTO、TiO<sub>2</sub>/FTO、FTO的 XRD谱。纳米TiO<sub>2</sub>薄膜在20为25.28°、37.8°、 48.04°、53.89°、55.06°、62.68°的位置处出现了对应于 (101)、(004)、(200)、(105)、(211)、(204)晶面的锐钛 矿衍射峰。NUs-TiO<sub>2</sub>/FTO的XRD谱中显示出较弱 的Au、Ag衍射峰(Au和Ag具有相似的晶体结构),这 是由于NUs在TiO<sub>2</sub>薄膜上的沉积量较少。上述结果 证实了NUs-TiO<sub>2</sub>/FTO样品被成功制备。

图 2(d)和图 2(e)分别是样品的透射光谱和反射 光谱。TiO<sub>2</sub>在 350 nm 处的透射率接近 0,这是由于 TiO<sub>2</sub>对光近乎完全吸收。在反射光谱和透射光谱中, TiO<sub>2</sub>在 350~750 nm 范围内的波纹是由与 TiO<sub>2</sub>薄膜/ 玻璃基底折射率差异有关的干涉光引起的<sup>[40]</sup>。NUs-TiO<sub>2</sub>复合结构在 450~700 nm 范围内的透射率与反射 率都接近 0。与 TiO<sub>2</sub>相比, NUs-TiO<sub>2</sub>复合结构在可见 光范围(450~700 nm)内表现出了显著的吸收增强。 样品的绝对吸收率(A)可由 A=1-R-T确定<sup>[41]</sup>, 其



图 2 NUs-TiO<sub>2</sub>复合结构的表征。(a)能带结构示意图;(b)NUs滴铸在TiO<sub>2</sub>薄膜上的SEM图;(c)NUs-TiO<sub>2</sub>/FTO、TiO<sub>2</sub>/FTO、 FTO的XRD谱;(d)透射光谱图;(e)反射光谱图;(f)吸收光谱图;(g)NUs-TiO<sub>2</sub>和TiO<sub>2</sub>的PL图

Fig. 2 Characterization of NUs-TiO<sub>2</sub> composite structure. (a) Energy band diagram; (b) SEM image of NUs drop cast on TiO<sub>2</sub> film;
(c) XRD patterns of NUs-TiO<sub>2</sub>/FTO, TiO<sub>2</sub>/FTO and FTO; (d) transmission spectra; (e) reflection spectra; (f) absorption spectra; (g) PL images of NUs-TiO<sub>2</sub> and TiO<sub>2</sub>

中R为反射率,T为透射率。从图2(f)中可以观察到 TiO<sub>2</sub>薄膜在可见光范围内显示出可忽略不计的吸收, 说明其对于光的利用范围是有限的;NUs-TiO2复合结 构在整个可见光谱(400~800 nm)范围内表现出了较 高的光学吸收(约为90%),这归因于NUs的LSPR特 性及其与半导体局部电场的有效耦合[42]。此外,在 320 nm 激发波长下,本课题组对样品进行了PL测量, 该测量实验可以揭示NUs的存在对光诱导的电荷空 间分离的影响<sup>[43]</sup>。光生电子-空穴对的再复合越少, PL发射谱的信号就越弱。如图2(g)所示,每个样品 的 PL 光谱在 375~500 nm 发射波段内有三个主要发 射峰,分别位于394、410、470 nm<sup>[44]</sup>。与TiO<sub>2</sub>相比, NUs-TiO2的PL谱发射强度较弱,这表明NUs的存在 显著改善了电子空穴对的空间分离,进一步延长了光 生载流子的寿命。上述特点使得 NUs 成为提高光电 化学(PEC)分解水效率的理想材料。

#### 3.4 NUs-TiO<sub>2</sub>光阳极用于PEC分解水

等离激元金属纳米颗粒的非线性光学特性使其受 光激发后一部分电子可以向高能态跃迁成为热电 子<sup>[37]</sup>,具有足够能量的热电子可以通过肖特基势垒注 入到 TiO<sub>2</sub>导带中,此时即使没有外加偏置电压,这些 热电子最终也可以被收集成为光电流。光电流的大小 与热电子产生和注入效率密切相关<sup>[38]</sup>,这为人们研究 由热载流子驱动的物理或化学过程提供了契机。本课 题组利用单粒子尺度上的瞬态光电流响应研究了 NUs 对 PEC 分解水反应的增强作用。在光学显微镜 下,本课题组利用自制的光电化学池进行实验,装置示 意图如图 3(a)所示。以铂丝作为对电极(CE),Ag/AgCl电极作为参比电极(RE),有无 NUs 滴铸的 TiO<sub>2</sub>/FTO 基板作为工作电极(WE)。所有测量均使 用具有微米直径光斑的 514 nm 激光束,激光通过水浸物镜聚焦于光电化学池底部的单样品颗粒上,使用坐标铜网来识别被测纳米颗粒的位置,如图 3(b)~(d) 所示。

图 4(a)显示了外加偏置电压为0时,NUs-TiO2上



- 图 3 用于识别被测颗粒位置的实验装置示意图。(a)光电化学 池装置示意图;(b)识别位置的低倍光学图像;(c)识别位 置的高倍光学图像;(d)识别位置的SEM图
- Fig. 3 Schematic of experimental set-up used for identifying the location of measured particles. (a) Schematic of photoelectrochemical (PEC) cell device; (b) low-magnification optical image of identified location;
  (c) high-magnification optical image of identified position; (d) SEM image of identified location

测得的光电流随时间的演变。可以发现,在514 nm激 光照射下,NUs-TiO<sub>2</sub>样品表现出迅速的光响应,在斩 波照明时间间隔内电流稳定,测得的光电流约为 2.71 nA,而纯TiO<sub>2</sub>薄膜上没有出现可检测的光电流。 这是因为514 nm激发光的光子能量为2.41 eV,小于 锐钛矿相TiO<sub>2</sub>的禁带宽度(约为3.2 eV)<sup>[45]</sup>,TiO<sub>2</sub>价带 和导带间没有发生电子跃迁,没有光生电子生成。相 比于之前的工作<sup>[8]</sup>,NUs-TiO<sub>2</sub>复合结构表现出的光电 流响应(约为2.71 nA)具有一定程度的提高,约为 NRs-TiO<sub>2</sub>复合结构(约为1.52 nA)的2倍。这归因于 NUs的高密度尖端提供了大量随机分布的热点,尖峰 处的强热点提高了热载流子的生成速率,丰富的金属/ 半导体界面增加了热载流子的注入机会,强大的局域 电场有助于电荷分离。在这里,本文没有考虑带间跃 迁的影响<sup>[46]</sup>。



图4 微尺度水平上 NUs-TiO<sub>2</sub>的光电化学分析。(a)斩波照明 下光电流的时间演变;(b)外加偏置电压对光电流响应的 影响;(c)激发源功率对光电流响应的影响;(d)NUs-TiO<sub>2</sub>的稳定性测试

Fig. 4 PEC analysis of NUs-TiO<sub>2</sub> at microscale level. (a) Time evolution of photocurrent under chopping illumination;
(b) dependence of photocurrent on applied bias;
(c) dependence of photocurrent on excitation source power; (d) stability measurement of NUs-TiO<sub>2</sub>

为进一步探究影响热载流子生成与注入效率的因素,本课题组比较了不同外加偏置电压(-0.02~0.04 V)下的光电流响应。如图4(b)所示,光电流的大小表现出对外加偏置电压的依赖性:当施加的反向偏置电压由0V增加至0.04 V时,测得的光电流由2.71 nA增大至3.06 nA。光电流增加的原因如下:当施加反向偏置电压时,外加电场与金属、n型半导体接触时形成的内建电场方向相反(内建电场方向由 n型半导体指向金属),进而削弱了内建电场。肖特基势垒

#### 第 50 卷 第 1 期/2023 年 1 月/中国激光

可以被理解为内建电场相应的电势差<sup>[47]</sup>,肖特基势垒 高度被降低,因此更有利于热载流子的转移。当施加 的正向偏置电压由0V增加至0.02V时,光电流由 2.71 nA减小至2.57 nA。这是由于当施加正向偏置 电压时,肖特基势垒高度增加,热电子的注入被进一步 削弱。此外,先前的研究表明,溶胶凝胶法制备的 TiO<sub>2</sub>薄膜中引入了氧空位缺陷,这也会降低肖特基势 垒的高度,从而更有利于热载流子的注入<sup>[28]</sup>。

光电流和激励源功率之间的关系如图 4(c)所示, 随着激发源功率由 2 mW 增加到 10 mW,光电流从 1.23 nA 增加到 2.71 nA。这是由于随着激发源功率 增加,电子动能增加,促使更多的具有足够能量的热载 流子越过肖特基势垒到达 TiO<sub>2</sub>导带,从而进一步提高 了热载流子的产生及注入效率。同时,可以观察到光 电流响应与激励源功率具有明显的线性依赖关系,这 种线性依赖关系可以被解释为光电流响应主要由单个 光子转化为单个热电子的过程控制<sup>[48]</sup>。图 4(d)显示 在 50个光照开关循环内光阳极均表现出了一致的光 响应规律,说明光阳极具有良好的再现性和稳定性。

#### 3.5 FDTD模拟

为了更好地理解电磁波与NUs的相互作用,本课题组利用FDTD模拟分析了不同入射光波长下单个NUs的电场分布,分析结果如图5所示。FDTD仿真模型尺寸为NUs实际平均粒径(140 nm)。数值模拟结果表明,NUs的尖峰附近出现了最强的局部电场区域,即NUs尖端的尖锐曲率支持强热点的生成。在800 nm入射光照射下,NUs显示出了更高的电场强度,说明NUs可以有效捕获波长较长的光子,这与NUs的消光光谱相匹配。上述结果表明,NUs的多尖刺结构有助于强热点的生成,可以有效地将光子集中



Fig. 5 FDTD-simulated electric filed distribution of a single NUs at different incident wavelengths. (a) 400 nm;
(b) 514 nm; (c) 600 nm; (d) 800 nm

- 于热点,进而促进热电子的产生。
- 4 结 论

传统的半导体光催化剂受限于材料的禁带宽度, 具有光吸收能力有限与电子-空穴对易快速复合等特 点,表现出较低的能量效率,等离激元金属纳米颗粒凭 借其LSPR效应可以有效收集和转化太阳能而成为提 高整体能量转换效率的首选材料。在等离激元光催化 领域,等离激元弛豫产生的热载流子可以高效地诱导 化学反应的发生。因此,怎样获得更高的热载流子产 生与注入效率成为了关键。本课题组通过种子介导生 长法成功制备了具有高密度尖端和宽谱吸收特性的 NUs,并利用微尺度反应区的光电流响应评估了热载 流子的产生与注入效率。NUs尖端的"避雷针效应" 使其拥有大量随机分布的热点,极大地提高了热载流 子的生成效率。NUs与TiO<sub>2</sub>间丰富的界面接触也增 加了热载流子的注入机会。此外,本课题组还探究了 其他影响能量效率的因素,外加偏置电压和提高激光 功率均会提高热载流子的产生与注入效率。本研究有 助于人们对热载流子转移机制的理解,为进一步推动 太阳能的高效利用提供了参考。

#### 参考文献

- Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy [J]. Nature Materials, 2011, 10(12): 911-921.
- [2] Linic S, Aslam U, Boerigter C, et al. Photochemical transformations on plasmonic metal nanoparticles[J]. Nature Materials, 2015, 14(6): 567-576.
- [3] Zheng Z K, Tachikawa T, Majima T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd-Au nanorods studied at the single-particle level[J]. Journal of the American Chemical Society, 2015, 137(2): 948-957.
- [4] Clavero C. Plasmon-induced hot-electron generation at nanoparticle/ metal-oxide interfaces for photovoltaic and photocatalytic devices
   [J]. Nature Photonics, 2014, 8(2): 95-103.
- [5] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 2015, 10(1): 25-34.
- [6] Yang B, Li C Y, Wang Z F, et al. Thermoplasmonics in solar energy conversion: materials, nanostructured designs, and applications[J]. Advanced Materials, 2022, 34(26): 2107351.
- [7] Liu L Q, Ouyang S X, Ye J H. Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance[J]. Angewandte Chemie (International Ed. in English), 2013, 52(26): 6689-6693.
- [8] Wang X, Liu C X, Gao C C, et al. Self-constructed multiple plasmonic hotspots on an individual fractal to amplify broadband hot electron generation[J]. ACS Nano, 2021, 15(6): 10553-10564.
- [9] Zhou L N, Zhang C, McClain M J, et al. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation[J]. Nano Letters, 2016, 16(2): 1478-1484.
- [10] Zhou L N, Martirez J M P, Finzel J, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts[J]. Nature Energy, 2020, 5(1): 61-70.
- [11] 潘赛虎,于航,赵云平,等.金属纳米颗粒的导入对顶发射 OLED光取出影响的FDTD模拟与研究[J].光学学报,2022,42 (9):0916001.

Pan S H, Yu H, Zhao Y P, et al. FDTD simulation and study on effect of metal nanoparticle introduction on light extraction of topemitting OLED[J]. Acta Optica Sinica, 2022, 42(9): 0916001.

- [12] Wolf M. Femtosecond dynamics of electronic excitations at metal surfaces[J]. Surface Science, 1997, 377/378/379: 343-349.
- [13] Hartland G V, Besteiro L V, Johns P, et al. What's so hot about electrons in metal nanoparticles? [J]. ACS Energy Letters, 2017, 2 (7): 1641-1653.
- [14] Govorov A O, Zhang H, Demir H V, et al. Photogeneration of hot plasmonic electrons with metal nanocrystals: quantum description and potential applications[J]. Nano Today, 2014, 9(1): 85-101.
- [15] Wang Z L, Du J, Zhang Y Z, et al. Free-standing nanoporous gold for direct plasmon enhanced electro-oxidation of alcohol molecules[J]. Nano Energy, 2019, 56: 286-293.
- [16] Hou W B, Hung W H, Pavaskar P, et al. Photocatalytic conversion of CO<sub>2</sub> to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions[J]. ACS Catalysis, 2011, 1(8): 929-936.
- [17] Collado L, Reynal A, Fresno F, et al. Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO<sub>2</sub> photoreduction[J]. Nature Communications, 2018, 9(1): 4986.
- [18] Feng K, Wang S H, Zhang D K, et al. Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO<sub>2</sub> photocatalysis[J]. Advanced Materials, 2020, 32(24): 2000014.
- [19] 符彬啸,王莉莉,张旭,等.Ag纳米网络结构的光学特性[J].激光与光电子学进展,2022,59(17):1716002.
  Fu B X, Wang L L, Zhang X, et al. Optical properties of Ag nanonetwork structure[J]. Laser & Optoelectronics Progress, 2022, 59(17):1716002.
- [20] Giugni A, Torre B, Toma A, et al. Hot-electron nanoscopy using adiabatic compression of surface plasmons[J]. Nature Nanotechnology, 2013, 8(11): 845-852.
- [21] Liu Y W, Chen Q L, Cullen D A, et al. Efficient hot electron transfer from small Au nanoparticles[J]. Nano Letters, 2020, 20 (6): 4322-4329.
- [22] Santiago E Y, Besteiro L V, Kong X T, et al. Efficiency of hotelectron generation in plasmonic nanocrystals with complex shapes: surface-induced scattering, hot spots, and interband transitions[J]. ACS Photonics, 2020, 7(10): 2807-2824.
- [23] Valenti M, Jonsson M P, Biskos G, et al. Plasmonic nanoparticlesemiconductor composites for efficient solar water splitting[J]. Journal of Materials Chemistry A, 2016, 4(46): 17891-17912.
- [24] Ratchford D C, Dunkelberger A D, Vurgaftman I, et al. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO<sub>2</sub> films[J]. Nano Letters, 2017, 17(10): 6047-6055.
- [25] Ma J, Zhang X D, Gao S W. Tunable electron and hole injection channels at plasmonic Al-TiO<sub>2</sub> interfaces[J]. Nanoscale, 2021, 13 (33): 14073-14080.
- [26] Hattori Y, Álvarez S G, Meng J, et al. Role of the metal oxide electron acceptor on gold-plasmon hot-carrier dynamics and its implication to photocatalysis and photovoltaics[J]. ACS Applied Nano Materials, 2021, 4(2): 2052-2060.
- [27] Gao X D, Fei G T, Zhang Y, et al. All-optical-input transistors: light-controlled enhancement of plasmon-induced photocurrent[J]. Advanced Functional Materials, 2018, 28(40): 1802288.
- [28] Li J T, Cushing S K, Meng F K, et al. Plasmon-induced resonance energy transfer for solar energy conversion[J]. Nature Photonics, 2015, 9(9): 601-607.
- [29] Wang X, Yao K L, Liu L H, et al. Enhancing hot electron generation and injection with plasmonic nanostructures[J]. Journal of Alloys and Compounds, 2022, 893: 162214.
- [30] Liu S L, Fei G T, Xu S H, et al. All-optical-input transistors with light-controlled enhancement and fast stabilization of hot-electron

photocurrent[J]. The Journal of Physical Chemistry C, 2021, 125 (34): 18887-18895.

- [31] Liu M, Pang Y J, Zhang B, et al. Enhanced electrocatalytic CO<sub>2</sub> reduction via field-induced reagent concentration[J]. Nature, 2016, 537(7620): 382-386.
- [32] Liu Z, Yang Z B, Peng B, et al. Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins[J]. Advanced Materials, 2014, 26(15): 2431-2439.
- [33] Zhu H F, Xie H, Yang Y, et al. Mapping hot electron response of individual gold nanocrystals on a TiO<sub>2</sub> photoanode[J]. Nano Letters, 2020, 20(4): 2423-2431.
- [34] 刘芷谕,乔旭升,樊先平.太阳能电池光谱转换材料的研究进展
  [J]. 激光与光电子学进展, 2021, 58(15): 1516010.
  Liu Z Y, Qiao X S, Fan X P. Research progress on spectral conversion materials for solar cells[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516010.
- [35] Khurgin J B. How to deal with the loss in plasmonics and metamaterials[J]. Nature Nanotechnology, 2015, 10(1): 2-6.
- [36] Chen K X, Wang H. Plasmon-driven photocatalytic molecular transformations on metallic nanostructure surfaces: mechanistic insights gained from plasmon-enhanced Raman spectroscopy[J]. Molecular Systems Design & Engineering, 2021, 6(4): 250-280.
- [37] Sousa-Castillo A, Comesaña-Hermo M, Rodríguez-González B, et al. Boosting hot electron-driven photocatalysis through anisotropic plasmonic nanoparticles with hot spots in Au-TiO<sub>2</sub> nanoarchitectures[J]. The Journal of Physical Chemistry C, 2016, 120(21): 11690-11699.
- [38] Ramakrishnan S B, Mohammadparast F, Dadgar A P, et al. Photoinduced electron and energy transfer pathways and photocatalytic mechanisms in hybrid plasmonic photocatalysis[J]. Advanced Optical Materials, 2021, 9(22): 2101128.
- [39] Moon C W, Choi M J, Hyun J K, et al. Enhancing

#### 第50卷第1期/2023年1月/中国激光

photoelectrochemical water splitting with plasmonic Au nanoparticles[J]. Nanoscale Advances, 2021, 3(21): 5981-6006.

- [40] Wang T M, Zheng S K, Hao W C, et al. Studies on photocatalytic activity and transmittance spectra of TiO<sub>2</sub> thin films prepared by r. f. magnetron sputtering method[J]. Surface and Coatings Technology, 2002, 155(2/3): 141-145.
- [41] 王杨,轩雪飞,朱路,等.超宽带高吸收超材料太阳能吸收器设 计[J].中国激光, 2022, 49(9): 0903001.
  Wang Y, Xuan X F, Zhu L, et al. Design of ultra-broadband and high-absorption metamaterial solar absorber[J]. Chinese Journal of Lasers, 2022, 49(9): 0903001.
- [42] Zhou L N, Swearer D F, Zhang C, et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis[J]. Science, 2018, 362(6410): 69-72.
- [43] Wang X M, Wang H, Zhang H F, et al. Dynamic interaction between methylammonium lead iodide and TiO<sub>2</sub> nanocrystals leads to enhanced photocatalytic H<sub>2</sub> evolution from HI splitting[J]. ACS Energy Letters, 2018, 3(5): 1159-1164.
- [44] Yang X J, Wu X L, Li J, et al. TiO<sub>2</sub>-Au composite nanofibers for photocatalytic hydrogen evolution[J]. RSC Advances, 2019, 9(50): 29097-29104.
- [45] Naldoni A, Altomare M, Zoppellaro G, et al. Photocatalysis with reduced TiO<sub>2</sub>: from black TiO<sub>2</sub> to cocatalyst-free hydrogen production[J]. ACS Catalysis, 2019, 9(1): 345-364.
- [46] Gargiulo J, Berte R, Li Y, et al. From optical to chemical hot spots in plasmonics[J]. Accounts of Chemical Research, 2019, 52 (9): 2525-2535.
- [47] Monch W. On the physics of metal-semiconductor interfaces[J]. Reports on Progress in Physics, 1990, 53(3): 221-278.
- [48] Mukherjee S, Zhou L N, Goodman A M, et al. Hot-electroninduced dissociation of H<sub>2</sub> on gold nanoparticles supported on SiO<sub>2</sub>
   [J]. Journal of the American Chemical Society, 2014, 136(1): 64-67.

# **Plasmonic Nanourchin Enhanced Hot Carrier Generation and Injection**

Wang Xi<sup>1</sup>, Liang Hongyan<sup>1,2\*</sup>

<sup>1</sup>School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China;

<sup>2</sup>Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University,

Tianjin 300350, China

#### Abstract

**Objective** Hot carriers induced by surface plasmon excitation can trigger chemical reactions, realizing efficient utilization of solar energy. The rational design of plasmonic metal nanostructures is considered an effective strategy for improving the efficiency of hot carrier generation and injection for ultrabroadband light absorption and efficient energy conversion. In this study, plasmonic nanourchins (NUs) with high-density tips were synthesized, and plasmonic-semiconductor nanoarchitectures were constructed as photoanodes. The photocurrent response in the microscale reaction region on the photoanode was used to evaluate the hot carrier generation and injection efficiency. The excellent performance of plasmonic NUs is ascribed to the multiple hot spots between the spikes, boosting the generation efficiency of the hot carrier, and the abundant interface between the metal and semiconductor increases the hot carrier injection opportunities. These results may pave the way for efficient excitation and extraction of hot carriers.

**Methods** In this study, NUs with ultrahigh-density sharp tips were synthesized through a seed-mediated growth route using L-Dopa as a reduction agent. Nanocrystalline  $TiO_2$  thin films were prepared using sol-gel and spin-coating methods. Then, the metal-semiconductor nanoarchitecture was constructed using a simple drop-casting method as a photoanode for photoelectrochemical (PEC) reactions. Subsequently, the photocurrent response in the microscale reaction region of the photoanode was measured in a homemade PEC cell to assess the transfer efficiency of the hot carrier. The photocurrent-time curves were measured under periodically switched laser illumination by focusing a 514 nm laser with a micrometer-

sized light spot closely on the sample particles through a water immersion objective. In addition, photocurrent measurements at different applied biases and excitation source powers were performed for the prepared NU-TiO<sub>2</sub> samples to investigate other factors affecting the hot carrier generation and injection efficiency. The morphologies of the NUs and NU-TiO<sub>2</sub> were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ensemble extinction spectra of the NUs and steady-state optical spectra of NU-TiO<sub>2</sub> were acquired using a Perkin-Elmer Lambda 750 spectrometer equipped with an integrating sphere. The crystal structure of NU-TiO<sub>2</sub> was studied by X-ray diffraction (XRD) using a Bruker D8 Advanced diffractometer.

**Results and Discussions** The prepared NUs possessed an ultrahigh density of sharp tips and abundant nanogaps. This superior structure exhibits broad absorption from 500 to 1000 nm, which facilitates the utilization of broadband solar energy (Fig. 1). To utilize the hot carrier generated by surface plasmon excitation better, the second step of the design is to construct a plasmonic-semiconductor nanoarchitecture that enables the hot carrier to be injected efficiently into the semiconductor before relaxation. The  $TiO_2$  thin film prepared by the sol-gel method is a good electron acceptor, and it only displays distinct absorption below a wavelength of 450 nm; the absorption in the visible region is negligible. Compared with those of TiO<sub>2</sub>, the steady-state optical spectra of NU-TiO<sub>2</sub> show that the addition of NUs can broaden the absorption spectral range to the visible region—see Fig. 2(f). As a result, the nanoarchitecture could achieve light absorption over a broad wavelength range. To investigate the physical or chemical processes driven by hot carriers further, the photocurrent response from the microscale reaction region on the photoanode was investigated. The results show that the prepared NU-TiO<sub>2</sub> nanoarchitecture has excellent photocatalytic activity—see Fig. 4(a). The superior performance is ascribed to the multiple hot spots between the spikes of the NUs that boost the generation efficiency of hot carriers, the abundant interface between metal and semiconductor that increases the chances of hot carrier injection, and the formation of a Schottky barrier that facilitates charge separation. Other factors affecting the hot carrier transfer efficiency were investigated, including the applied bias and excitation source power. The photocurrent increases significantly when the applied bias increases from 0 to 0.04 V—see Fig. 4(b). This drastic change can be attributed to the lowering of the Schottky barrier when a reverse bias is applied, benefiting the hot electron transfer. Meanwhile, the photocurrent response increases significantly with increase in excitation source power—see Fig. 4(c). With a higher kinetic energy of electrons at a higher power density, more hot carriers can cross the Schottky barrier to reach the conduction bands of  $TiO_2$ , which further improves the efficiency of hot carrier generation and injection. Under the combined action of the above factors, the hot carrier generation and injection efficiency can be further improved.

**Conclusions** NUs with high-density tips and broad-spectrum absorption properties were prepared through seedmediated growth. An NU-TiO<sub>2</sub> nanoarchitecture was designed to steer the migration of hot carriers to the conduction bands of TiO<sub>2</sub>, making it possible to fully use plasmonic hot carriers to realize broad-spectrum photocatalysis. The photocurrent response in the microscale reaction region on the photoanode was used to evaluate the hot carrier generation and injection efficiency. The "lightning rod effect" at the tips of the NUs makes a large number of randomly distributed hot spots possible, which significantly increases the efficiency of hot carrier generation. The abundant interface between the metal and semiconductor also increases the chances of hot carrier injection. Other factors affecting energy efficiency were investigated, including the applied bias and excitation source power. This study advances the understanding of the hot carrier transfer mechanism for promoting the utilization of solar energy in diverse photochemistry.

Key words materials; nanourchins; hot carrier; surface plasmon; plasmonic photocatalysis